Finding Clusters and Components by Unsupervised Learning

نویسنده

  • Erkki Oja
چکیده

We present a tutorial survey on some recent approaches to unsupervised machine learning in the context of statistical pattern recognition. In statistical PR, there are two classical categories for unsupervised learning methods and models: first, variations of Principal Component Analysis and Factor Analysis, and second, learning vector coding or clustering methods. These are the starting-point in this article. The more recent trend in unsupervised learning is to consider this problem in the framework of probabilistic generative models. If it is possible to build and estimate a model that explains the data in terms of some latent variables, key insights may be obtained into the true nature and structure of the data. This approach is also reviewed, with examples such as linear and nonlinear independent component analysis and topological maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

BotOnus: an online unsupervised method for Botnet detection

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...

متن کامل

Investigating students empathy and their school learning behaviors using Artificial Intelligence methods

Introduction Schools have a central role in cultivating students' personality by inculcating empathy. Empathy is the ability of one person to understand what another person is thinking and feeling in a given situation. The goal of this study is to explore the relationship between students’ empathy and their learning behaviors. The first task of our work is to classify students into clusters ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004